I’m interested in the study of the partial differential equations (PDE) at the heart of general relativity: the Einstein equations. My research is twofold:

- Construction of
**high-frequency solutions**to the Einstein vacuum equations. **Stability of black holes**as solutions to the Einstein vacuum equations.

## Publications and preprints

From most recent to oldest (the dates correspond to the preprints’ publications).

4. **High-frequency solutions to the constraint equations****.*** June 2022, arXiv:2206.13062.*

3. **High-frequency solutions to the Einstein vacuum equations: local existence in generalised wave gauge****.** *June* *2022, arXiv:2206.12318, submitted.*

2. **Global existence of high-frequency solutions to a semi-linear wave equation with a null structure.** *September 2021, arXiv:2109.15204, accepted in Asymptotic Analysis.*

1. **Einstein vacuum equations with 𝕌(1) symmetry in an elliptic gauge: local well-posedness and blow-up criterium.** *January 2021, arXiv:2101.09093, accepted in Journal of Hyperbolic Differential Equations**.*

Articles 2,3 and 4 of this list constitute my PhD thesis, which starts with an introduction written in French.

## Seminars and talks

- Séminaire de physique mathématique (Institut Fourier, Grenoble, January 2023)
- Séminaire Laurent Schwartz (CMLS-IHES, December 2022)
- Séminaire EDP (Université Rennes 1, IRMAR, November 2022)
- Mathematical GR and Hyperbolic PDE Seminar (Columbia, May 2022)
- Topics in general relativity (WWU Münster, April 2022)
- HADES Seminar (Berkeley University, March 2022)
- Analysis & PDE Seminar (Stanford University, March 2022)
- Séminaire EDP et Physique mathématique (Université Sorbonne Paris Nord, LAGA, February 2022)
- Vienna Relativity Seminar (University of Vienna, December 2021)
- Seminar on Mathematical General Relativity (Sorbonne Université, LJLL, December 2021)
- Séminaire des doctorants du CMAP et du CMLS (Ecole Polytechnique, February 2021)
- Groupe de travail en relativité (Sorbonne Université, LJLL, September 2020)
- Séminaire des doctorants ANH et ANEDP (Orsay, LMO, November 2019)